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Book Review: The Transition to Chaos in Conservative 
Classical Systems: Quantum Manifestations 

The Transition to Chaos in Conservative Classical Systems: Quantum 
Manifestations. L. E. Reichl, Springer-Verlag, Berlin, 1992. 

There are many different manifestations of the probabilistic behavior of 
physical objects. These may be consequences either of inherent quan- 
tum properties or they may be consequences of some form of the law of 
large numbers in many-body systems. Sometimes one needs an external 
random force to produce chaotic behavior of a system, and sometimes 
this behavior is a basic property of nonlinear dynamical systems. This 
possibility was discovered about 25 years ago in the context of classical 
mechanics, hitherto thought to be quite simple from the mathematical 
point of view. Such "simplicity" is, of course only a seeming simplicity. 
Newton's laws are by no means self-evident, and even can contradict a 
commonsense point of view. Indeed, why does a body continue to move 
with a constant velocity when no external force acts on the body? In other 
words, why is the force proportional to the acceleration rather than to the 
velocity? We are already used to this and other paradoxical features of 
mechanics. Only in recent times has the new and somewhat surprising 
phenomenon of deterministic chaos forced itself to the attention of 
scientists in a number of disciplines. Such chaos appears not only in some 
nonlinear classical systems, but also in a number of quantum systems. 
A clear description of the onset of chaos in classical nondissipative systems 
and its quantum manifestations is the subject of the book being reviewed. 

Reichl's book consists of three parts, describing the dynamics of con- 
servative systems, both classical (Chapters 2~t) and quantum mechanical 
(Chapters 5-9), in addition to a number of stochastic properties of classical 
systems (Chapter 10). Chapter 2 contains a general description of chaos 
based on the concept of nonlinear resonances, and includes the Noether 
and KAM theorems. Three illustrative examples are given; the three-body 
Toda lattice, the two-resonance Walker-Ford Hamiltonian, and the 
conservative Duffing oscillator. Chapter 3 describes area-preserving twist 
maps, including the linearized mapping (tangent map), the whisker map 
and its local version (standard map), as well as the universal and quadratic 
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maps. Frequency doubling and diffusion in two-dimensional maps are 
considered in some detail. Global properties of the maps considered in the 
previous section are analyzed in Chapter 4 starting from a Hamiltonian 
formulationl Interactions between different resonances are analyzed by 
the Chirikov overlap criterion and by renormalization group mapping. The 
chapter also contains a description of Arnold diffusion in systems with 
more than two degrees of freedom. 

Chapter 5 is devoted to the concept of integrability in quantum 
systems based on Moyal brackets, quantum Lax pairs, and Peres' time 
averaging. Chapter 6 discusses Hamiltonian random matrix theory, allow- 
ing one to formulate the changes in the spectral properties of nonintegrable 
quantum systems. The A3-statistics considered at the end of the chapter 
gives an additional tool for detecting differences between integrable and 
nonintegrable quantum systems. Chapter 7 is devoted to a consideration 
of energy spectra obtained both experimentally and numerically with a 
Poisson-like or Wigner-like spectrum. Billiard balls of different shapes and 
two anharmonic oscillator systems are used to illustrate the appearance of 
quantum chaos. Chapter 8 discusses the uses of semiclassical path integrals 
and the Gutzwiller trace formula to obtain the spectral properties of quan- 
tum systems, with billiard trajectories and the anisotropic Kepler system as 
examples. Periodically driven quantum systems are described in Chapter 9, 
where the appearance of quantum nonlinear resonances and their interac- 
tions are discussed. Examples here include the quantum kicked oscillator 
and the microwave-driven hydrogen atom. The final chapter covers the 
subject of how chaos is manifested in stochastic systems described by a 
Fokker-Planck equation, which has been discussed by the author and her 
collaborators in the literature. A few appendices contain useful information 
exemplified by the transition from coordinate-momentum to action-angle 
variables in a few illustrative examples, Moyal brackets, SU(3) and space- 
time symmetries, and generating functions for Gaussian and circular 
orthogonal ensembles. 

There are a number of earlier books on this subject (e.g., F. Haake, 
The Quantum Signature of Chaos, and M. Gutzwiller, Chaos in Classical 
and Quantum Mechanics, both published by Springer-Verlag in 1990). The 
present volume makes extensive reference to the scientific literature up to 
1991, which is quite useful to scientists working in chaos and related fields. 
Reichl's book is a good example of a systematic and nonchaotic description 
of chaos. 
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